News

  • 0
  • 0

Researchers Developed Graphene-based Foam Composites For Efficient Water Filtration

The U.S. and its allies plan to impose sanctions on more Russian industries and supply chains.

The US government representatives recently visited Europe to consult with allies on strengthening and enforcing sanctions to punish Russia. They also plan to take action to disrupt their critical supply chains.

The US government claims that the sanctions imposed on Russia since the invasion began on February 24 have proved extremely effective, plunging Russia into a financial crisis. The sanctions include a freeze on the Russian central bank's foreign exchange assets, a ban on hard currency transactions by major Russian banks and wealthy individuals, and export restrictions on advanced semiconductors and other technologies. The sanctions have weakened the Russian economy and left the Kremlin with fewer resources.

The volatile international political situations will continue to affect the markets and prices of many commodities like the graphene powder.


While graphene-based materials have potential as adsorption materials, their performance may be hampered by aggregation and lack of control over their porosity and size. 
In a recent study, researchers from the Universities of Exeter, Kyushu, and Oxford tackled this problem by developing a unique graphene material and high-porosity composite foam to combat aggregation. 
 
Drugs are one of the most prominent emerging pollutants (EC) in water systems. They can cause serious environmental consequences as well as potential health problems. In order to successfully eradicate ECs from treated wastewater streams, sewage and drinking water purification facilities must adopt appropriate tertiary treatment methods. Compared to reverse osmosis, oxidation, microfiltration, ultrafiltration, ion exchange, etc., adsorption is considered to be a technology with great potential in water treatment because it is reliable and cheaper.
 
Graphene and graphene oxide (GO) have a greater tendency to adsorb natural pollutants because of their large innate specific area (relative to many different carbon-based substances), wettability, monolayer structure, and surfaces decorated with oxygen-containing functional groups (OCFG).
 
Boron nitride (BN) has many excellent qualities, including excellent thermal and chemical stability and excellent wear resistance; Therefore, it is used in high-temperature environments and other industries.
 
In this study, reduced porous GO nanofilms were effectively anchored to banded boron nitride foams for the treatment of water contaminated with gefilozide (GEM) in batch tests and column studies.
 
In terms of adsorption kinetics for gefilozil, the graphene-based foam is superior to its graphene-based competitors such as GO, PG, and Nanographene sheets (NGP), achieving an extraction efficiency of 90% in just 5 minutes. 
 
In terms of lifetime, graphene-based nanomaterials supported by BN foams showed consistent gefilozil drug extraction over multiple cycles, with no significant adsorption loss.  In addition, the foam material exhibits remarkable properties, including lightness of over 98% porosity and excellent strength, capable of withstanding 1,300-1,400 times its own weight. 
 
The researchers believe that enhanced graphene-based composite foams for filtration purposes will be an important step forward in the water and wastewater filtration technology.  These results suggest that high porosity foam-reinforced graphene nanomaterial filters with shorter interaction duration and longer penetration times for treating water and wastewater may be easily manufactured.
 
Graphene Powder and BN Powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest graphene powder and BN powder price, you can send us your inquiry for a quote. ([email protected])
 
Graphene Powder and BN Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality graphene powder and BN powder, please feel free to contact us and send an inquiry. ([email protected])

 

Due to the limited total amount of traditional energy, people have a huge demand for cleaner and greener new energy alternatives. Now, the emergence of graphene is unlocking the possibility of its application in the energy field, which can create a greener, more efficient, and sustainable future. Here Francesco Bonaccorso, Deputy Director of Innovation at the Graphene Flagship Program, explains how his researchers have developed a series of initiatives to bring graphene from the lab to the commercial market. Graphene has become a research hotspot for new materials in the 21st century. Graphene has been adopted by many industries, the most notable of which are healthcare and key material applications.

The development of graphene has brought huge fluctuations in the demand for graphene powder, and the demand for graphene powder will continue to grow in the future. You can contact us for the latest news on graphene powder.

Inquiry us

Our Latest News

Introduction of aquarium kit for sale and market analysis in 2022

The aquarium is a place for aquatic life display and popular science education, as well as a place for aquatic life resource protection and scientific research. Aquariums can specialize in marine life, freshwater life, or both; there are public aquar…

The Global Silicon Metal Market introduction and aluminum and its uses supplier

The Global Silicon Metal Market Generally, there are two different types of silicon metals. One is called the Chemical grade and the other is called the Metallurgical grade. These t…

Introduction to aluminum and its uses Additives

Introduction to aluminum and its uses Additives Whether you'r…